110 research outputs found

    Support Neighbor Loss for Person Re-Identification

    Full text link
    Person re-identification (re-ID) has recently been tremendously boosted due to the advancement of deep convolutional neural networks (CNN). The majority of deep re-ID methods focus on designing new CNN architectures, while less attention is paid on investigating the loss functions. Verification loss and identification loss are two types of losses widely used to train various deep re-ID models, both of which however have limitations. Verification loss guides the networks to generate feature embeddings of which the intra-class variance is decreased while the inter-class ones is enlarged. However, training networks with verification loss tends to be of slow convergence and unstable performance when the number of training samples is large. On the other hand, identification loss has good separating and scalable property. But its neglect to explicitly reduce the intra-class variance limits its performance on re-ID, because the same person may have significant appearance disparity across different camera views. To avoid the limitations of the two types of losses, we propose a new loss, called support neighbor (SN) loss. Rather than being derived from data sample pairs or triplets, SN loss is calculated based on the positive and negative support neighbor sets of each anchor sample, which contain more valuable contextual information and neighborhood structure that are beneficial for more stable performance. To ensure scalability and separability, a softmax-like function is formulated to push apart the positive and negative support sets. To reduce intra-class variance, the distance between the anchor's nearest positive neighbor and furthest positive sample is penalized. Integrating SN loss on top of Resnet50, superior re-ID results to the state-of-the-art ones are obtained on several widely used datasets.Comment: Accepted by ACM Multimedia (ACM MM) 201

    Bi-Directional Generation for Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information. The conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure. To balance the mitigation of domain gap and the preservation of the inherent structure, we propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains. Specifically, two cross-domain generators are employed to synthesize one domain conditioned on the other. The performance of our proposed method can be further enhanced by the consistent classifiers and the cross-domain alignment constraints. We also design two classifiers which are jointly optimized to maximize the consistency on target sample prediction. Extensive experiments verify that our proposed model outperforms the state-of-the-art on standard cross domain visual benchmarks.Comment: 9 pages, 4 figure

    Mining Label Distribution Drift in Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation targets to transfer task knowledge from labeled source domain to related yet unlabeled target domain, and is catching extensive interests from academic and industrial areas. Although tremendous efforts along this direction have been made to minimize the domain divergence, unfortunately, most of existing methods only manage part of the picture by aligning feature representations from different domains. Beyond the discrepancy in feature space, the gap between known source label and unknown target label distribution, recognized as label distribution drift, is another crucial factor raising domain divergence, and has not been paid enough attention and well explored. From this point, in this paper, we first experimentally reveal how label distribution drift brings negative effects on current domain adaptation methods. Next, we propose Label distribution Matching Domain Adversarial Network (LMDAN) to handle data distribution shift and label distribution drift jointly. In LMDAN, label distribution drift problem is addressed by the proposed source samples weighting strategy, which select samples to contribute to positive adaptation and avoid negative effects brought by the mismatched in label distribution. Finally, different from general domain adaptation experiments, we modify domain adaptation datasets to create the considerable label distribution drift between source and target domain. Numerical results and empirical model analysis show that LMDAN delivers superior performance compared to other state-of-the-art domain adaptation methods under such scenarios

    Can Domain Adaptation Improve Accuracy and Fairness of Skin Lesion Classification?

    Full text link
    Deep learning-based diagnostic system has demonstrated potential in classifying skin cancer conditions when labeled training example are abundant. However, skin lesion analysis often suffers from a scarcity of labeled data, hindering the development of an accurate and reliable diagnostic system. In this work, we leverage multiple skin lesion datasets and investigate the feasibility of various unsupervised domain adaptation (UDA) methods in binary and multi-class skin lesion classification. In particular, we assess three UDA training schemes: single-, combined-, and multi-source. Our experiment results show that UDA is effective in binary classification, with further improvement being observed when imbalance is mitigated. In multi-class task, its performance is less prominent, and imbalance problem again needs to be addressed to achieve above-baseline accuracy. Through our quantitative analysis, we find that the test error of multi-class tasks is strongly correlated with label shift, and feature-level UDA methods have limitations when handling imbalanced datasets. Finally, our study reveals that UDA can effectively reduce bias against minority groups and promote fairness, even without the explicit use of fairness-focused techniques

    Development of Automated Incident Detection System Using Existing ATMS CCTV

    Get PDF
    Indiana Department of Transportation (INDOT) has over 300 digital cameras along highways in populated areas in Indiana. These cameras are used to monitor traffic conditions around the clock, all year round. Currently, the videos from these cameras are observed by human operators. The main objective of this research is to develop an automatic real-time system to monitor traffic conditions using the INDOT CCTV video feeds by a collaborative research team of the Transportation Active Safety Institute (TASI) at Indiana University-Purdue University Indianapolis (IUPUI) and the Traffic Management Center (TMC) of INDOT. In this project, the research team developed the system architecture based on a detailed system requirement analysis. The first prototype of major system components of the system has been implemented. Specifically, the team has successfully accomplished the following: An AI based deep learning algorithm provided in YOLO3 is selected for vehicle detection which generates the best results for daytime videos. The tracking information of moving vehicles is used to derive the locations of roads and lanes. A database is designed as the center place to gather and distribute the information generated from all camera videos. The database provides all information for the traffic incident detection. A web-based Graphical User Interface (GUI) was developed. The automatic traffic incident detection will be implemented after the traffic flow information being derived accurately. The research team is currently in the process of integrating the prototypes of all components of the system together to establish a complete system prototype
    • …
    corecore